Highway Engineering

Field Formulas

Metric (SI) or US Units

Unless otherwise stated the formulas shown in this manual can be used with any units. The user is cautioned not to mix units within a formula. Convert all variables to one unit system prior to using these formulas.

Significant Digits

Final answers from computations should be rounded off to the number of decimal places justified by the data. The answer can be no more accurate than the least accurate number in the data. Of course, rounding should be done on final calculations only. It should not be done on interim results.

Persons with disabilities may request this information be prepared in alternate forms by calling collect (360) 664-9009. Deaf and hearing impaired people call 1-800-833-6388 (TTY Relay Service).

1998
Engineering Publications
Transportation Building
Olympia, WA 98504
360-705-7430

CONTENTS

Nomenclature for Circular Curves 2
Circular Curve Equations 4
Simple Circular Curve 5
Degrees of Curvature to Various Radii 6
Nomenclature for Vertical Curves 7
Vertical Curve Equations 8
Nomenclature for Nonsymmetrical Curves 10
Nonsymmetrical Vertical Curve Equations 11
Determining Radii of Sharp Curves 12
Dist. from Fin. Shld. to Subgrade Shld. 13
Areas of Plane Figures 14
Surfaces and Volumes of Solids 18
Trigonometric Functions for all Quadrants 23
Trigonometric Functions 24
Right Triangle 25
Oblique Triangle 26
Conversion Factors 28
Metric Conversion Factors 30
Land Surveying Conversion Table 31
Steel Tape Temperature Corrections 31
Temperature Conversion 31
Less Common Conversion Factors 32
Water Constants 32
Cement Constants 32
Multiplication Factor Table 33
Recommended Pronunciations 33
Reinforcing Steel 34

Nomenclature For Circular Curves

POT	Point On Tangent outside the effect of any curve		
POC	Point On a circular Curve		
POST	Point On a Semi-Tangent (within the limits of a curve)		
PI	Point of Intersection of a back tangent and forward tangent		
PC	Point of Curvature - Point of change from back tangent to circular curve		
PT	Point of Tangency - Point of change from circular curve to forward tangent		
PCC	Point of Compound Curvature - Point common to two curves in the same direction with different radii		
PRC	Point of Reverse Curve - Point common to two curves in opposite directions and with the same or different radii		
L	Total Length of any circular curve measured along its arc	\quad	Length between any two points on
:---			
a circular curve			

Nomenclature For Circular Curves (Cont.)

DC Deflection angle for full circular curve measured from tangent at PC or PT
dc Deflection angle required from tangent to a circular curve to any other point on a circular curve
C Total Chord length, or long chord, for a circular curve
C' Chord length between any two points on a circular curve
T Distance along semi-Tangent from the point of intersection of the back and forward tangents to the origin of curvature (From the PI to the PC or PT)
tx Distance along semi-tangent from the PC (or PT) to the perpendicular offset to any point on a circular curve. (Abscissa of any point on a circular curve referred to the beginning of curvature as origin and semi-tangent as axis)
ty The perpendicular offset, or ordinate, from the semi-tangent to a point on a circular curve
E External distance (radial distance) from PI to midpoint on a simple circular curve

Circular Curve Equations

Equations	Units
$\mathrm{R}=\frac{180^{\circ}}{\pi} \cdot \frac{L}{\Delta}$	m or ft.
$\Delta=\frac{180^{\circ}}{\pi} \cdot \frac{\mathbf{L}}{\mathbf{R}}$	degree
$\mathbf{L}=\frac{\pi}{180} \cdot \mathbf{R} \Delta$	m or ft.
$\mathrm{T}=\mathrm{R} \tan \frac{\Delta}{2}$	m or ft.
$\mathbf{E}=\frac{\mathbf{R}}{\cos \frac{\Delta}{2}}-\mathbf{R}$	m or ft.
$\mathrm{C}=2 \mathrm{R} \sin \frac{\Delta}{2}, \text { or }=2 \mathrm{R} \sin \mathrm{DC}$	m or ft.
$\mathbf{M O}=\mathbf{R}\left(1-\cos \frac{\Delta}{2}\right)$	m or ft.
DC $=\frac{\Delta}{2}$	degree
$\mathbf{d c}=\frac{\mathbf{L}_{\mathbf{c}}}{\mathbf{L}}\left(\frac{\Delta}{2}\right)$	degree
$\mathbf{C l}^{\prime}=2 \mathrm{R} \sin (\mathbf{d c})$	m or ft.
$\mathrm{C}=2 \mathrm{R} \sin (\mathrm{DC})$	m or ft.
$\mathbf{t x}=\mathrm{R} \boldsymbol{\operatorname { s i n }}(2 \mathrm{dc})$	m or ft.
$t y=R[1-\cos (2 d c)]$	m or ft.

Simple Circular Curve

Constant for $\pi=3.14159265$

Degree of Curvature for

 Various Lengths of Radii

Exact for Arc Definition

$$
D=\frac{100\left(\frac{180}{\pi}\right)}{R}=\frac{18000}{\pi R}
$$

Where D is Degree of Curvature

Length of Radii for Various
 Degrees of Curvature

$$
R=\frac{100\left(\frac{180}{\pi}\right)}{D}=\frac{18000}{\pi D}
$$

Where R is Radius Length

Nomenclature For Vertical Curves

\& G_{2}	Tangent Grade in percent
A	The absolute of the Algebraic difference in grades in percent
BVC	Beginning of Vertical Curve
EVC	End of Vertical Curve
VPI	Vertical Point of Intersection
L	Length of vertical curve
D	Horizontal distance to any point on the curve from BVC or EVC
E	Vertical distance from VPI to curve
e	Vertical distance from any point on the curve to the tangent grade
K	Distance required to achieve a 1 percent change in grade
L_{1}	Length of a vertical curve which will pass through a given point
D_{0}	Distance from the BVC to the lowest or highest point on curve
X	Horizontal distance from P' to VPI
H	A point on tangent grade G_{1} to vertical position of point P^{\prime}
\mathbf{P} and P^{\prime}	' Points on tangent grades

Symmetrical Vertical Curve Equations

$$
\mathbf{A}=\left(\mathbf{G}_{\mathbf{2}}\right)-\left(\mathbf{G}_{\mathbf{1}}\right)
$$

$$
E=\frac{A L}{800}
$$

$$
\mathbf{E}=\frac{1}{2}\left(\frac{\text { Elev.BVC }+ \text { Elev.EVC }}{2}-\text { Elev. VPI }\right)
$$

$$
e=\frac{4 E D^{2}}{L^{2}}
$$

Notes: All equations use units of length (not stations or increments)
The variable \mathbf{A} is expressed as an absolute in percent (\%)

$$
\begin{array}{ll}
\text { Example: } & \text { If } \mathbf{G}_{\mathbf{1}}=+4 \% \text { and } \mathbf{G}_{\mathbf{2}}=-2 \% \\
& \text { Then } \mathbf{A}=6
\end{array}
$$

Symmetrical Vertical Curve Equations (cont.)

$e=\frac{\mathrm{AD}^{2}}{200 \mathrm{~L}}$
$L_{1}=\frac{2\left(A X+200 e+20 \sqrt{A X e+100 e^{2}}\right)}{A}$
$D_{0}=\left|G_{1}\right| \frac{L}{A}$
$X=\frac{100\left(E \operatorname{ElevH}-\text { ElevP }^{\prime}\right)}{A}$
$\mathbf{K}=\frac{\mathbf{L}}{\mathbf{A}}$

Nomenclature For Nonsymmetrical Vertical Curves

	Grades in percent
A	The absolute of the Algebraic difference in grades in percent
BVC	Beginning of Vertical Curve
EVC	End of Vertical Curve
VPI	Vertical Point of Intersection
I_{1}	Length of first section of vertical curve
I_{2}	Length of second section of vertical curve
L	Length of vertical curve
D_{1}	Horizontal distance to any point on the curve from BVC towards the VPI
D_{2}	Horizontal distance to any point on the curve from EVC towards the VPI
$\mathbf{e l}_{1}$	Vertical distance from any point on the curve to the tangent grade between BVC and VPI
e_{2}	Vertical distance from any point on the curve to the tangent grade between EVC and VPI
E	Vertical distance from VPI to curve

Nonsymmetrical Vertical

 Curve Equations

$$
\begin{aligned}
& A=\left(G_{2}\right)-\left(G_{1}\right) \\
& L=l_{1}+l_{2} \\
& E=\frac{I_{1} l_{2}}{200\left(l_{1}+I_{2}\right)} A \\
& e_{1}=m\left\{\frac{D_{1}}{I_{1}}\right\}^{2} \\
& e_{2}=m\left\{\frac{D_{2}}{I_{2}}\right\}^{2}
\end{aligned}
$$

Determining Radii of Sharp Curves by Field Measurements

Note: Points A and C may be any two points on the curve

Example:

Measure the chord length from A to C

$$
A C=18.4 \text { then } B C=9.2
$$

Measure the middle ordinate length B to D

$$
\begin{gathered}
B D=3.5 \\
\mathbf{R}=\frac{\mathbf{9 . 2 ^ { 2 }}}{\mathbf{7 . 0}}+\frac{\mathbf{3 . 5}}{\mathbf{2}}=\mathbf{1 3 . 8}
\end{gathered}
$$

Distance From Finished

 Shld. to Subgrade ShId. and Slope Equivalents

Equation: $\mathrm{x}=\frac{\mathbf{1 0 0 B}}{\mathrm{A}}$
A = Algebraic difference in \% between shld. slope and subgrade slope
$\mathbf{B}=$ Depth of surfacing at finished shoulder
$\mathbf{x}=$ Distance from finished shld. to subgrade shld.

Shoulder Slope	Equivalent Rate of Grade	Equivalent Vertical Angle
$1: 1.5$	66.67%	$33^{\circ} 41^{\prime} 24^{\prime \prime}$
$1: 1.75$	57.14%	$29^{\circ} 44^{\prime} 42^{\prime \prime}$
$1: 2$	50.00%	$26^{\circ} 33^{\prime} 54^{\prime \prime}$
$1: 2.5$	40.00%	$21^{\circ} 48^{\prime} 05^{\prime \prime}$
$1: 3$	33.33%	$18^{\circ} 26^{\prime} 06^{\prime \prime}$
$1: 4$	25.00%	$14^{\circ} 02^{\prime} 10^{\prime \prime}$
$1: 5$	20.00%	$11^{\circ} 18^{\prime} 36^{\prime \prime}$
$1: 6$	16.67%	$9^{\circ} 27^{\prime} 44^{\prime \prime}$
$1: 8$	12.50%	$7^{\circ} 07^{\prime} 30^{\prime \prime}$
$1: 10$	10.00%	$5^{\circ} 42^{\prime} 38^{\prime \prime}$

Subgrade Slope	Equivalent Rate of Grade	Equivalent Vertical Angle
$.020 / 1$	2.00%	$1^{\circ} 08^{\prime} 45^{\prime \prime}$
$.025 / 1$	2.50%	$1^{\circ} 25^{\prime} 56^{\prime \prime}$
$.030 / 1$	3.00%	$1^{\circ} 43^{\prime} 06^{\prime \prime}$
$.035 / 1$	3.50%	$2^{\circ} 00^{\prime} 16^{\prime \prime}$
$.040 / 1$	4.00%	$2^{\circ} 17^{\prime} 26^{\prime \prime}$
$.050 / 1$	5.00%	$2^{\circ} 51^{\prime} 45 "$

Areas of Plane Figures

Nomenclature

$$
\mathbf{A}=\text { Area } \quad \mathbf{h}=\text { Height }
$$

$$
\mathbf{R}=\text { Radius } \quad \mathbf{P}=\mathbf{P}
$$

$$
A=\frac{b h}{2}
$$

$$
\mathbf{P}=\mathbf{a}+\mathbf{b}+\mathbf{c}
$$

Areas of Plane Figures

$$
A=\pi R^{2} \frac{\Delta}{360^{0}}-\frac{R^{2} \operatorname{Sin} \Delta}{2}
$$

$\mathrm{A}=\pi \mathrm{R}^{2} \frac{\Delta}{360^{0}}$
$\mathrm{P}=2 \mathrm{R}+\frac{\Delta}{360^{0}}(2 \pi \mathrm{R})$

Fillet

$\mathbf{A}=\mathbf{R T}-\left(\frac{\Delta}{\mathbf{3 6 0}}\right) \pi \mathbf{R}^{2}$
When: $\Delta=90^{0}, \mathrm{~A}=\mathbf{0} .2146 \mathrm{R}^{2}$

Areas of Plane Figures

Annulus
(Circular Ring)

$$
A=\frac{\pi}{4}\left(D^{2}-d^{2}\right)
$$

Irregular Figure

$$
\mathbf{A}=\mathbf{L}\left(\frac{\mathbf{a}+\mathbf{j}}{\mathbf{2}}+\mathbf{b}+\mathbf{c}+\mathbf{d}+\mathbf{e}+\mathbf{f}+\mathbf{g}+\mathbf{h}+\mathbf{i}\right)
$$

Surfaces\Volumes of Solids

Nomenclature

S Lateral surface area
V Volume
A Area of section perpendicular to sides
B Area of base
P Perimeter of base
$\mathbf{P}_{\mathbf{A}}$ Perimeter of section perpendicular to its sides
R Radius of sphere or circle
L Slant height or lateral length
H Perpendicular Height
C Circumference of circle or sphere

Pyramid or Cone
Right or Regular

$$
S=\frac{1}{2} P L \quad V=\frac{1}{3} B H
$$

Surfaces\Volumes of Solids

Pyramid or Cone, Right or
Oblique, Regular or Irregular

$$
\mathrm{V}=\frac{1}{3} \mathrm{BH}
$$

Surfaces\Volumes of Solids

Frustum of any Prism or Cylinder

$$
\mathbf{V}=\mathbf{B H} \quad \mathbf{V}=\frac{1}{2} \mathbf{A}\left(\mathbf{L}_{2}+\mathbf{L}_{1}\right)
$$

Frustum of Pyramid or Cone Right and Regular, Parallel Ends

$$
\begin{aligned}
& \mathbf{S}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{L}(\mathbf{P}+\mathbf{p}) \quad \mathbf{V}=\frac{\mathbf{1}}{\mathbf{3}} \mathbf{H}(\mathbf{B}+\mathbf{b}+\sqrt{\mathbf{B} \mathbf{b}}) \\
& \mathbf{p}=\text { perimeter of top } \quad \mathbf{b}=\text { area of top }
\end{aligned}
$$

Frustum of any Pyramid or Cone, with Parallel Ends

$\mathbf{V}=\frac{1}{3} \mathbf{H}(\mathbf{B}+\mathbf{b}+\sqrt{\mathbf{B b}})$
b = area of top
Surfaces\Volumes of Solids

$$
S=4 \pi R^{2} \quad V=\frac{4}{3} \pi R^{3}
$$

Surfaces\Volumes of Solids
 Spherical Zone

 $S=2 \pi R H$
 $$
V=\frac{1}{24} \pi H\left(3 C_{1}^{2}+3 C^{2}+4 H^{2}\right)
$$

Prismoidal Formula

$V=\frac{H}{6}(B+b+4 M)$
$\mathbf{M}=$ Area of section parallel to bases, Midway between them
$\mathbf{b}=$ area of top

Signs of Trigonometric Functions for All Quadrants

Note:
When using a calculator to compute trigonometric functions from North Azimuths, the correct sign will be displayed

Trigonometric Functions

Sine	$\operatorname{Sin} \theta=\frac{\mathbf{y}}{\mathbf{r}}=\frac{\text { opposite }}{\text { hypotenuse }}$
Cosine	$\cos \theta=\frac{x}{r}=\frac{\text { adjacent }}{\text { hypotenuse }}$
Tangent	$\boldsymbol{\operatorname { t a n }} \theta=\frac{\mathbf{y}}{\mathbf{x}}=\frac{\text { opposite }}{\text { adjacent }}$
Cotangent	$\cot \theta=\frac{x}{y}=\frac{\text { adjacent }}{\text { opposite }}$
Secant	$\sec \theta=\frac{\mathbf{r}}{\mathbf{x}}=\frac{\text { hypotenuse }}{\text { adjacent }}$
Cosecant	$\csc \theta=\frac{\mathbf{r}}{\mathbf{y}}=\frac{\text { hypotenuse }}{\text { opposite }}$
Reciprocal Relations	$\begin{gathered} \sin \theta=\frac{1}{\csc } \quad \tan \theta=\frac{1}{\cot \theta} \\ \cos \theta=\frac{1}{\sec } \end{gathered}$
Rectangular	$\begin{aligned} & \mathbf{x}=\mathbf{r} \cdot \cos \theta \\ & \mathbf{y}=\mathbf{r} \cdot \sin \theta \end{aligned}$
Polar	$\begin{gathered} r=\sqrt{\left(x^{2}+y^{2}\right)} \\ \theta=\arctan \frac{y}{x} \end{gathered}$

Right Triangles

$A+B+C=180$		K=Area
Pythagorean Theorem		$\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$
A and B are complementary angles		
$\begin{array}{clc} \sin A=\cos B & \tan A=\cot B & \sec A=\csc B \\ \cos A=\sin B & \cot A=\tan B & \csc A=\sec B \\ \hline \end{array}$		
Given	To Find	Equation
a, c	$\begin{gathered} \mathbf{A}, \mathbf{B}, \\ \mathbf{b}, \mathbf{K} \end{gathered}$	$\begin{array}{ll} \sin A=\frac{a}{c} & \cos B=\frac{a}{c} \\ b=\sqrt{c^{2}-a^{2}} & K=\frac{a}{2} \sqrt{c^{2}-a^{2}} \end{array}$
a, b	$\begin{gathered} \mathbf{A}, \mathbf{B}, \\ \mathbf{c}, \mathbf{K} \end{gathered}$	$\begin{array}{ll} \tan A=\frac{a}{b} & \tan B=\frac{b}{a} \\ c=\sqrt{a^{2}+b^{2}} & K=\frac{a b}{2} \\ \hline \end{array}$
A, \mathbf{a}	$\begin{aligned} & \mathbf{B}, \mathrm{b}, \\ & \mathrm{c}, \mathrm{~K} \end{aligned}$	$\begin{array}{ll} B=90^{0}-A & b=a \cdot \cot A \\ \mathbf{c}=\frac{a}{\sin A} & k=\frac{a^{2} \cdot \cot A}{2} \end{array}$
A, b	$\begin{aligned} & \mathbf{B}, \mathbf{a} \\ & \mathbf{c}, \mathbf{K} \end{aligned}$	$\begin{array}{ll} B=90^{\circ}-A & a=b \cdot \tan A \\ c=\frac{b}{\cos A} & K=\frac{b^{2} \cdot \tan A}{2} \end{array}$
A, c	$\begin{aligned} & \mathbf{B}, \mathbf{a}, \\ & \mathbf{b}, \mathbf{K} \end{aligned}$	$\begin{array}{ll} B=90^{0}-A & a=c \cdot \sin A \\ b=c \cdot \cos A & K=\frac{c^{2} \cdot \sin 2 A}{4} \end{array}$

Oblique Triangles

Law of Sines		$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Law of Cosines		$\begin{aligned} a^{2} & =b^{2}+c^{2}-2 b c \cdot \cos A \\ b^{2} & =a^{2}+c^{2}-2 a c \cdot \cos B \\ c^{2} & =a^{2}+b^{2}-2 a b \cdot \cos C \end{aligned}$
Sum of Angles		$\mathrm{A}+\mathrm{B}+\mathrm{C}=180{ }^{\text {0 }}$
K = Area		$\mathbf{s}=\frac{\mathbf{a}+\mathbf{b}+\mathbf{c}}{2}$
Given	To Find	Equation
a, b, c	A	$\begin{gathered} \sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}} \\ \cos \frac{A}{2}=\sqrt{\frac{s(s-a)}{b c}} \\ \tan \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \end{gathered}$

Oblique Triangles

Given	To Find	Equation
a, b, c	B	$\begin{aligned} & \sin \frac{B}{2}=\sqrt{\frac{(s-a)(s-c)}{a c}} \\ & \cos \frac{B}{2}=\sqrt{\frac{s(s-b)}{a c}} \\ & \tan \frac{B}{2}=\sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \end{aligned}$
a, b, c	C	$\begin{aligned} & \sin \frac{C}{2}=\sqrt{\frac{(s-a)(s-b)}{a b}} \\ & \cos \frac{C}{2}=\sqrt{\frac{s(s-c)}{a b}} \\ & \tan \frac{C}{2}=\sqrt{\frac{(s-a)(s-b)}{s(s-c)}} \end{aligned}$
a, b, c	K	$K=\sqrt{s(s-a)(s-b)(s-c)}$
a, A, B	b, c	$b=\frac{a \cdot \sin B}{\sin A} \quad \mathbf{c}=\frac{\mathbf{a} \cdot \sin (A+B)}{\sin A}$
a, A, B	K	$K=\frac{a b \cdot \sin C}{2}=\frac{a^{2} \cdot \sin B \cdot \sin C}{2 \cdot \sin A}$
a, b, A	B	$\sin B=\frac{b \cdot \sin A}{a}$
$\mathbf{a}, \mathrm{b}, \mathrm{A}$	c	$\begin{gathered} c=\frac{a \cdot \sin C}{\sin A}=\frac{b \cdot \sin C}{\sin B} \\ c=\sqrt{\left(\mathbf{a}^{2}+b^{2}-2 a b \cdot \cos C\right)} \end{gathered}$
a, b, A	K	$K=\frac{a b \cdot \sin C}{2}$
a, b, C	A	$\tan A=\frac{a \cdot \sin C}{b-a \cdot \cos C}$
a, b, C	c	$\begin{aligned} & c=\frac{a \cdot \sin (A+B)}{\sin A} \\ & c=\sqrt{\left(a^{2}+b^{2}-2 a b \cdot \cos C\right)} \end{aligned}$
a, b, C	K	$K=\frac{a b \cdot \sin C}{2}$

Conversion Factors

Class	multiply:	by:	to get:
Length	in	0.0833	ft
	in	0.028	yd
	$f t$	12	in
	ft	0.33	yd
	ft	0.06	rods
	yd	36	in
	yd	3	ft
	yd	0.18	rods
	rods	198	in
	rods	16.5	ft
	rods	5.5	yd
	mi	5280	ft
	mi	1760	yd
	mi	320	rods
Area	$i n^{2}$	0.007	ft^{2}
	ft^{2}	144	$i n^{2}$
	ft^{2}	0.11	yd^{2}
	$y d^{2}$	1296	in^{2}
	$y d^{2}$	9	ft^{2}
	$y d^{2}$	0.03	rods ${ }^{2}$
	rods ${ }^{2}$	272.25	ft^{2}
	rods ${ }^{2}$	30.25	yd^{2}
	acres	43560	ft^{2}
	acres	4840	yd^{2}
	acres	160	rods ${ }^{2}$

Conversion Factors

Class	multiply:	by:	to get:
Volume	ft^{3}	1728	in^{3}
	ft^{3}	0.04	yd^{3}
	ft^{3}	7.48	gallons
	yd^{3}	27	ft^{3}
	yd^{3}	202	gallons
	quarts	2	pints
	quarts	0.25	gallons
	gallons	8	pints
	gallons	4	quarts
	gallons	0.13	ft^{3}
Force	ounces	0.06	pounds
	pounds	16	ounces
	tons (short)	2000	pounds
	tons (metric)	2205	pounds
Velocity	miles/hr	88	$\mathrm{ft} / \mathrm{min}$
	miles/hr	1.47	$\mathrm{ft} / \mathrm{sec}$

Metric Conversion Factors

Class	multiply:	by:	to get:
Length	in	25.40	mm
	in	2.540	cm
	in	0.0254	m
	ft	0.3048	m
	yd	0.9144	m
	mi	1.6093	km
Area	ft^{2}	0.0929	m^{2}
	yd^{2}	0.8361	m^{2}
	$m i^{2}$	2.590	km^{2}
Volume	in ${ }^{3}$	16.387	cm^{3}
	ft^{3}	0.0283	m^{3}
	$y d^{3}$	0.7646	m^{3}
	gal	3.785	L
	gal	0.0038	m^{3}
	fl oz	29.574	mL
	acre ft	1233.48	m^{3}
Mass	OZ	28.35	g
	lb	0.4536	kg
	$\begin{gathered} \text { kip } \\ (1000 \mathrm{lb}) \\ \hline \end{gathered}$	0.4536	metric ton $(1000 \mathrm{~kg})$
	short ton 2000 lb	907.2	kg
	short ton	0.9072	metric ton

Land Surveying
 Conversion Factors

Class	multiply:	by:	to get:
Area	acre	4046.8726	$\mathrm{~m}^{2}$
	acre	0.40469	ha $10000 \mathrm{~m}^{2}$
Length	ft	$12 / 39.37^{*}$	m

* Exact, by definition of the U.S. Survey foot

Steel Tape Temperature Corrections

$$
\begin{gathered}
\mathrm{C}=11.66 \cdot 10^{-6}\left(\mathrm{~T}_{\mathrm{C}}-20\right) \mathrm{L}_{\mathrm{m}} \\
\text { or } \\
\mathrm{C}=6.45 \cdot 10^{-6}\left(\mathrm{~T}_{\mathrm{F}}-68\right) \mathrm{L}_{\mathrm{f}} \\
\text { Where: }
\end{gathered}
$$

C = Correction
$\mathbf{T}_{\mathbf{C}}=$ Temperature in degrees Celsius
$\mathrm{L}_{\mathbf{M}}=$ Length in meters
$\mathbf{T}_{\mathbf{F}}=$ Temperature in degrees Fahrenheit
$L_{f}=$ Length in feet

Temperature Conversion

Fahrenheit to Celsius $\quad \frac{5}{9}\left({ }^{\circ} \mathrm{F}-32\right)$
Celsius to Fahrenheit $\left(\frac{9}{5}^{\circ} \mathrm{C}\right)+32$

Less Common Conversion Factors

Class	multiply:	by:	to get:	
Density	$\mathrm{lb} / \mathrm{ft}^{3}$	16.0185	$\mathrm{~kg} / \mathrm{m}^{3}$	
	$\mathrm{lb} / \mathrm{yd}^{3}$	0.5933	$\mathrm{~kg} / \mathrm{m}^{3}$	
Pressure	psi	6894.8	Pa	
	ksi	6.8948	MPa	
	${\mathrm{lb} / \mathrm{ft}^{2}}$	47.88	Pa	
	ft / s	0.3048	$\mathrm{~m} / \mathrm{s}$	
Velocity	mph	0.4470	$\mathrm{~m} / \mathrm{s}$	
	mph	1.6093	$\mathrm{~km} / \mathrm{h}$	

Freezing point of water $=0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$
Boiling point of water under pressure of one atmosphere $=100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$
The mass of one cu. meter of water is 1000 kg The mass of one liter of water is 1 kg (2.20 lbs)
$1 \mathrm{cu} . \mathrm{ft}$. of water @ $60^{\circ} \mathrm{F}=62.37 \mathrm{lbs}(28.29 \mathrm{~kg})$
1 gal of water @ $60^{\circ} \mathrm{F}=8.3377 \mathrm{lbs}(3.78 \mathrm{~kg})$

Cement Constants

1 sack of cement (appx.) $=1 \mathrm{ft}^{3}=0.028 \mathrm{~m}^{3}$
1 sack of cement $=94 \mathrm{lbs} .=42.64 \mathrm{~kg}$
1 gallon water $=8.3453 \mathrm{lbs} . @ 39.2^{\circ} \mathrm{F}$
1 gallon water $=3.7854 \mathrm{~kg} @ 4^{\circ} \mathrm{C}$

Multiplication Factor Table

Multiple	Prefix	Symbol
$1000000000=10^{9}$	giga	G
$1000000=10^{6}$	mega	M
$1000=10^{3}$	kilo	k
$100=10^{2}$	*hecto	h
$10=10^{1}$	*deka	da
$0.1=10^{-1}$	*deci	d
$0.01=10^{-2}$	*centi	c
$0.001=10^{-3}$	milli	m
$0.000001=10^{-6}$	micro	μ
$0.000000001=10^{-9}$	nano	n

* Avoid when possible

Recommended
Pronunciations

Prefix	Pronunciation
giga	jig'a (i as in jig, a as in a-bout
mega	as in mega-phone
kilo	kill' oh
hecto	heck' toe
deka	deck' a (a as in a-bout
centi	as in centi-pede
milli	as in mili-tary
micro	as in micro-phone
nano	nan' oh

Reinforcing Steel

$\begin{aligned} & \text { Bar } \\ & \text { Size } \end{aligned}$	Nominal Diameter	Nominal Area	Unit Weight
\#3	$\begin{gathered} 9.5 \mathrm{~mm} \\ {[0.375 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 71 \mathrm{~mm}^{2} \\ {\left[0.110 \mathrm{in}^{2}\right]} \end{gathered}$	$0.560 \mathrm{~kg} / \mathrm{m}$ [0.376 lb\ft]
\#4	$\begin{aligned} & 12.7 \mathrm{~mm} \\ & {[0.500 \mathrm{in}]} \end{aligned}$	$\begin{gathered} 127 \mathrm{~mm}^{2} \\ {\left[0.197 \mathrm{in}^{2}\right]} \end{gathered}$	$\begin{aligned} & 0.994 \mathrm{~kg} \backslash \mathrm{~m} \\ & {[0.668 \mathrm{lb} \backslash \mathrm{ft}]} \end{aligned}$
\#5	$\begin{aligned} & 15.9 \mathrm{~mm} \\ & {[0.625 \mathrm{in}]} \end{aligned}$	$\begin{gathered} 199 \mathrm{~mm}^{2} \\ {\left[0.309 \mathrm{in}^{2}\right]} \end{gathered}$	$1.552 \mathrm{~kg} / \mathrm{m}$ [$1.043 \mathrm{lb} \backslash \mathrm{ft}]$
\#6	$\begin{aligned} & 19.1 \mathrm{~mm} \\ & {[0.750 \mathrm{in}]} \end{aligned}$	$\begin{gathered} 287 \mathrm{~mm}^{2} \\ {\left[0.445 \mathrm{in}^{2}\right]} \end{gathered}$	$2.235 \mathrm{~kg} / \mathrm{m}$ [1.502 lb\|ft]
\#7	$\begin{aligned} & 22.2 \mathrm{~mm} \\ & {[0.875 \mathrm{in}]} \end{aligned}$	$\begin{aligned} & 387 \mathrm{~mm}^{2} \\ & {\left[0.600 \mathrm{in}^{2}\right]} \end{aligned}$	$3.045 \mathrm{~kg} / \mathrm{m}$ [2.044 lb\|ft]
\#8	$\begin{aligned} & 25.4 \mathrm{~mm} \\ & {[1.000 \mathrm{in}]} \end{aligned}$	$\begin{gathered} 507 \mathrm{~mm}^{2} \\ {\left[0.786 \mathrm{in}^{2}\right]} \end{gathered}$	$3.973 \mathrm{~kg} / \mathrm{m}$ [2.670 lb\ft]
\#9	$\begin{aligned} & 28.7 \mathrm{~mm} \\ & {[1.128 \mathrm{in}]} \end{aligned}$	$\begin{gathered} 647 \mathrm{~mm}^{2} \\ {\left[1.003 \mathrm{in}^{2}\right]} \end{gathered}$	$5.060 \mathrm{~kg} / \mathrm{m}$ [3.400 lb\ft]
\#10	$\begin{aligned} & 32.3 \mathrm{~mm} \\ & {[1.270 \mathrm{in}]} \end{aligned}$	$\begin{gathered} 819 \mathrm{~mm}^{2} \\ {\left[1.270 \mathrm{in}^{2}\right]} \end{gathered}$	6.404 kg lm [4.303 lb\|ft]
\#11	$\begin{aligned} & 35.8 \mathrm{~mm} \\ & {[1.410 \mathrm{in}]} \end{aligned}$	$\begin{aligned} & 1007 \mathrm{~mm}^{2} \\ & {\left[1.561 \mathrm{in}^{2}\right]} \end{aligned}$	$\begin{aligned} & 7.907 \mathrm{~kg} \backslash \mathrm{~m} \\ & {[5.313 \mathrm{lb} \backslash \mathrm{ft}]} \end{aligned}$
\#14	$\begin{aligned} & 43.0 \mathrm{~mm} \\ & {[1.693 \mathrm{in}]} \end{aligned}$	$\begin{aligned} & 1452 \mathrm{~mm}^{2} \\ & {\left[2.251 \mathrm{in}^{2}\right]} \end{aligned}$	$11.384 \mathrm{~kg} \backslash \mathrm{~m}$ [7.650 lb\ft]
\#18	$\begin{aligned} & 57.3 \mathrm{~mm} \\ & {[2.257 \mathrm{in}]} \end{aligned}$	$\begin{aligned} & 2579 \mathrm{~mm}^{2} \\ & {\left[3.998 \mathrm{in}^{2}\right]} \end{aligned}$	$\begin{aligned} & 20.239 \mathrm{~kg} \backslash \mathrm{~m} \\ & {[13.600 \mathrm{lb} \backslash \mathrm{ft}]} \end{aligned}$

Notes

Notes

